Research Group of Prof. Dr. I. Neitzel
Institute for Numerical Simulation
maximize

Publications of Prof. Dr. Ira Neitzel:

Journal Papers:

[1] L. Bonifacius and I. Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic pdes. Mathematical Control and Related Fields, 2017. Accepted. Preprint version available as INS Preprint No. 1705.
bib | .pdf 1 ]
[2] I. Neitzel, T. Wick, and W. Wollner. An optimal control problem governed by a regularized phase field fracture propagation model. SIAM J. Control Optim., 55(4):2271-2288, 2017. also available as IGDK 1754 Preprint 2015-12.
bib | DOI ]
[3] I. Neitzel and W. Wollner. A priori l2-discretization error estimates for the state in elliptic optimization problems with pointwise inequality state constraints. Numer. Math., online first, 2017. also available as INS Preprint No. 1606.
bib | DOI | .pdf 1 ]
[4] M. Mateos and I. Neitzel. Dirichlet control of elliptic state constrained problems. Comput. Optim. Appl., published online, 2015.
bib | DOI ]
[5] P. Merino, I. Neitzel, and F. Tröltzsch. An adaptive numerical method for semi-infinite elliptic control problems based on error estimates. Optim. Methods Softw., 30(3):492-515, 2015.
bib | DOI | http ]
[6] I. Neitzel, J. Pfefferer, and A. Rösch. Finite element discretization of state-constrained elliptic optimal control problems with semilinear state equation. SIAM J. Control Optim., 53(2):874-904, 2015.
bib | DOI | http ]
[7] K. Krumbiegel, I. Neitzel, and A. Rösch. Regularization for semilinear elliptic optimal control problems with pointwise state and control constraints. Comput. Optim. Appl., 52(1):181-207, 2012.
bib | DOI | http ]
[8] I. Neitzel and B. Vexler. A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math., 120(2):345-386, 2012.
bib | DOI | http ]
[9] P. Merino, I. Neitzel, and F. Tröltzsch. On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal., 90(6):1047-1074, 2011.
bib | DOI | http ]
[10] I. Neitzel, U. Prüfert, and T. Slawig. A smooth regularization of the projection formula for constrained parabolic optimal control problems. Numer. Funct. Anal. Optim., 32(12):1283-1315, 2011.
bib | DOI | http ]
[11] K. Krumbiegel, I. Neitzel, and A. Rösch. Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl., 2(2):222-246, 2010.
bib ]
[12] P. Merino, I. Neitzel, and F. Tröltzsch. Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems. Discuss. Math. Differ. Incl. Control Optim., 30(2):221-236, 2010.
bib | DOI | http ]
[13] I. Neitzel, U. Prüfert, and T. Slawig. Strategies for time-dependent PDE control with inequality constraints using an integrated modeling and simulation environment. Numer. Algorithms, 50(3):241-269, 2009.
bib | DOI | http ]
[14] I. Neitzel and F. Tröltzsch. On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints. ESAIM Control Optim. Calc. Var., 15(2):426-453, 2009.
bib | DOI | http ]
[15] I. Neitzel and F. Tröltzsch. On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. Control Cybernet., 37(4):1013-1043, 2008.
bib ]

Proceedings, Series- and Book Contributions:

[1] F. Ludovici, I. Neitzel, and W. Wollner. A priori error estimates for nonstationary optimal control problems with gradient constraints. PAMM, 15(1):611-612, 2015.
bib | DOI ]
[2] I. Neitzel and F. Tröltzsch. Numerical analysis of state-constrained optimal control problems for PDEs. In Constrained optimization and optimal control for partial differential equations, volume 160 of Internat. Ser. Numer. Math., pages 467-482. Birkhäuser/Springer Basel AG, Basel, 2012.
bib | DOI | http ]
[3] I. Neitzel, U. Prüfert, and T. Slawig. Solving time-dependent optimal control problems in comsol multiphysics. Proceedings CD of the 2008 European COMSOL Conference, 2008.
bib ]
[4] I. Neitzel, U. Prüfert, and T. Slawig. Optimal pde control using comsol multiphysics. Proceedings CD of the 2008 European COMSOL Conference, 2008.
bib ]
[5] M. Gubisch, I. Neitzel, and S. Volkwein. A-posteriori error estimation of discrete pod models for pde-constrained optimal control. In Model reduction and approximation: theory and algorithms, Computational Science and Engineering. SIAM. accepted. Preprint version available as INS Preprint No. 1608.
bib | .pdf 1 ]

Submitted Articles:

[1] F. Ludovici, I. Neitzel, and W. Wollner. A priori error estimates for state constrained semilinear parabolic optimal control problems. 2016. in revision, also available as INS Preprint No. 1605.
bib | .pdf 1 ]