Research Group of Prof. Dr. I. Neitzel
Institute for Numerical Simulation
maximize

Publications of Prof. Dr. Ira Neitzel:

Journal Papers:

[1] I. Neitzel, T. Wick, and W. Wollner. An optimal control problem governed by a regularized phase field fracture propagation model. 55(4):2271-2288, 2017. also available as IGDK 1754 Preprint 2015-12.
bib | DOI ]
[2] I. Neitzel and W. Wollner. A priori l2-discretization error estimates for the state in elliptic optimization problems with pointwise inequality state constraints. 2016. accepted for publication in Numerische Mathematik, also available as INS Preprint No. 1606.
bib | .pdf 1 ]
[3] M. Mateos and I. Neitzel. Dirichlet control of elliptic state constrained problems. Comput. Optim. Appl., published online, 2015.
bib | DOI ]
[4] P. Merino, I. Neitzel, and F. Tröltzsch. An adaptive numerical method for semi-infinite elliptic control problems based on error estimates. Optim. Methods Softw., 30(3):492-515, 2015.
bib | DOI | http ]
[5] I. Neitzel, J. Pfefferer, and A. Rösch. Finite element discretization of state-constrained elliptic optimal control problems with semilinear state equation. SIAM J. Control Optim., 53(2):874-904, 2015.
bib | DOI | http ]
[6] K. Krumbiegel, I. Neitzel, and A. Rösch. Regularization for semilinear elliptic optimal control problems with pointwise state and control constraints. Comput. Optim. Appl., 52(1):181-207, 2012.
bib | DOI | http ]
[7] I. Neitzel and B. Vexler. A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math., 120(2):345-386, 2012.
bib | DOI | http ]
[8] P. Merino, I. Neitzel, and F. Tröltzsch. On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal., 90(6):1047-1074, 2011.
bib | DOI | http ]
[9] I. Neitzel, U. Prüfert, and T. Slawig. A smooth regularization of the projection formula for constrained parabolic optimal control problems. Numer. Funct. Anal. Optim., 32(12):1283-1315, 2011.
bib | DOI | http ]
[10] K. Krumbiegel, I. Neitzel, and A. Rösch. Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl., 2(2):222-246, 2010.
bib ]
[11] P. Merino, I. Neitzel, and F. Tröltzsch. Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems. Discuss. Math. Differ. Incl. Control Optim., 30(2):221-236, 2010.
bib | DOI | http ]
[12] I. Neitzel, U. Prüfert, and T. Slawig. Strategies for time-dependent PDE control with inequality constraints using an integrated modeling and simulation environment. Numer. Algorithms, 50(3):241-269, 2009.
bib | DOI | http ]
[13] I. Neitzel and F. Tröltzsch. On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints. ESAIM Control Optim. Calc. Var., 15(2):426-453, 2009.
bib | DOI | http ]
[14] I. Neitzel and F. Tröltzsch. On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. Control Cybernet., 37(4):1013-1043, 2008.
bib ]

Proceedings, Series- and Book Contributions:

[1] F. Ludovici, I. Neitzel, and W. Wollner. A priori error estimates for nonstationary optimal control problems with gradient constraints. PAMM, 15(1):611-612, 2015.
bib | DOI ]
[2] I. Neitzel and F. Tröltzsch. Numerical analysis of state-constrained optimal control problems for PDEs. In Constrained optimization and optimal control for partial differential equations, volume 160 of Internat. Ser. Numer. Math., pages 467-482. Birkhäuser/Springer Basel AG, Basel, 2012.
bib | DOI | http ]
[3] I. Neitzel, U. Prüfert, and T. Slawig. Solving time-dependent optimal control problems in comsol multiphysics. Proceedings CD of the 2008 European COMSOL Conference, 2008.
bib ]
[4] I. Neitzel, U. Prüfert, and T. Slawig. Optimal pde control using comsol multiphysics. Proceedings CD of the 2008 European COMSOL Conference, 2008.
bib ]
[5] M. Gubisch, I. Neitzel, and S. Volkwein. A-posteriori error estimation of discrete pod models for pde-constrained optimal control. In Model reduction and approximation: theory and algorithms, Computational Science and Engineering. SIAM. accepted. Preprint version available as INS Preprint No. 1608.
bib | .pdf 1 ]

Submitted Articles:

[1] L. Bonifacius and I. Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic pdes. 2017. submitted. Preprint version available as INS Preprint No. 1705.
bib | .pdf 1 ]
[2] F. Ludovici, I. Neitzel, and W. Wollner. A priori error estimates for state constrained semilinear parabolic optimal control problems. 2016. in revision, also available as INS Preprint No. 1605.
bib | .pdf 1 ]